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A note regarding ‘On Hamilton’s principle for 
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The canonical form of the equations for the free-surface elevation and potential of an 
irrotational fluid is more than a coincidence. The elevation is a ‘generalized co- 
ordinate ’ field sufficient to define the system Lagrangian without explicit reference 
to the motion of the fluid interior. The Lagrangian and the associated field equations 
are complete and self-contained in the two-dimensional surface co-ordinates, but 
non-local (integro-differential) in form; the canonical equations derived by Miles are 
just the Hamiltonian counterparts. 

John Miles has demonstrated in the preceding paper (Miles 1977) that the motion of 
an irrotational fluid with a free surface can be described by a variational principle that, 
when reduced to quantities on the free surface, is formally identical to Hamilton’s 
principle for the canonically conjugate fields r] and 6.  One might be tempted to dismiss 
this correspondence as an interesting analogy with another branch of mechanics, but 
to do so would be to overlook its deeper significance. In  fact, an irrotational fluid with 
a free surface is a mechanical system exactly of the type for which the methods of 
Lagrange and Hamilton were devised, and it is perhaps only a historical accident 
that the less general, specifically fluid-mechanical formulations have become the 
conventional ones. 

If we were to proceed from the beginning with a classical analysis of this system, we 
should recognize that incompressibility and irrotationality constitute a set of con- 
straints on the motion that enables us to describe the entire flow field in terms of the 
‘generalized co-ordinate ’ r](x),  the surface elevation. Having expressed the kinetic and 
potential energies T and V as functionals of r] and its time derivative qt, we could then 
extract from their difference L the equations of motion for r ] ,  

(slat) (SLISnJ - SL/Sr] = 0, (1) 

without explicitly solving for the motion of the fluid interior. Now the content of ( 1 )  is 
Bernoulli’s equation on the fluid sur€ace, but the essence of Lagrange’s method is to 
ignore the forces operating on the interior to maintain the mechanical constraints, so 
that the existence of Bernoulli’s integral in the interior is not needed. 

Only kinematical information, in the form U = Vq5, V2q5 = 0, is required from the 
fluid interior in order that the kinetic energy 

T = 3 1 ( V q 5 ) ’ d v = ) I ~ V q 5 . d s =  + l f ; q t d X  (2) 
may be expressed in terms of surface quantities. The boundary kinematics, 

U . d S  = vtdx,  (3) 
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are imposed as part of the system description; here the classical derivation departs 
from that of Miles, in which ( 3 )  is extracted from a three-dimensional variational 
principle, We complete the kinematical description by employing a suitable Green's 
function G to obtain the surface potential 6 in terms of rt:  

( 4 )  E(x') = J G(x', X) V$ . ds  = J G(x', X) qt dx, 

or T = ~ S a t ( x ' ) G ( ~ ' , x ) r t ( x ) d X ' d x .  ( 5 )  

Note that G necessarily depends on the boundary shape, i.e. on the entire function 7, 
not merely on its values at  x' and x. 

In contrast with many other physical systems, surface waves do not possess a 
localizable kinetic energy density in the two surface dimensions; the kinetic energy is 
a bilinear form in I t  involving a double integral over the space x. By the same token, 
the variational derivative of T with respect to rt is a non-local linear functional of rt 
whose formal implicit definition is 

(YT = J [~T/&%(x)l %(x) dx. 
A variation of (2) and integration by parts yields 

ST = J V$ . QS$ dv = J ES?jt dx, (7 )  

establishing that the associated conjugate momentum for 7 is the surface potential 
itseIf, as Miles has shown, i.e. 

Here 6 is to be interpreted as the specific linear functional ( 4 )  of the surface field T t ,  
which we might abbreviate as 6 = Ort,  with 6 understood to be a non-local operator 
linear in its effect on rt but retaining nonlinear dependence on the surface profile ~ ( x ) .  
The Lagrangian is then 

SL/Srt(x) = m). (8) 

a% rtl = s J (rt 0% - Y?) dx. (9) 

The Lagrangian procedure thus provides us with two equations, a kinematical one 
(4) for defining the conjugate momentum and a dynamical one (1) specifying its rate of 
change 

These equations are formally complete and can in principle be solved without reference 
to the motion of the fluid interior. In  practice it3 is convenient to take [ as the inde- 
pendent variable and derive qt by inverting the linear equation (4), which gives 

agat  = sL/sr. (10) 

aqpt = 6-q = $6; ( 1 1 )  

ar la t  = sH/s t ,  agat  = - s ~ / s T  (12a, b )  

in this form the kinematical equation is one member of a canonical pair 

derivable from the surface Hamiltonian 

whose essential structure is contained in the q-dependent linear operator @. To lowest 
order P is independent of 7; in a basin of depth d the leading term in a slope expaneion 

t This notation is standard, though it differs from that of Miles [see his equation (2.3)l .  
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of P is given by Miles as 
Po = I? tanh R d ,  

being the linear operator that multiplies each Fourier component of a field by its 
wavenumber modulus. The somewhat singular operator Po is also non-local, except in 
the limit of shallow-water waves, as Miles has shown. It is remarkable that the higher- 
order terms in (14) account for the nonlinear behaviour not only in Bernoulli’s 
equation (12 b ) ,  but in the kinematical equation ( 1 2 a )  for ayl2t as well. The expansion 
for H implied by (14 ) ,  i.e. 

thus yields a representation of wave dynamics in which the nonlinear intemctions are 
clearly identified at, various orders of surface slope, as distinct from the various 
perturbation orders which might occur in a given solution of the field equations. 

The ultimate value of a canonical form of surface-wave dynamics is that a body of 
results is immediately available that would otherwise have to be demonstrated piece- 
meal. For example, the invariance of the Hamiltonian under translations in space and 
time leads respectively to conservation of the energy (13 )  and of the field momentum 

H = Ho+H,+ ..., (16) 

M = - J [ V ? d x ,  (17)  

again without reference to the identification of M as the total horizontal fluid flux 
IVhq5dv. Any modal expansion of the fields in orthonormal functions @m(x) ,  e.g. 

7 = %m krm f ;  = ZPm @m, (18)  

is automatically a canonical transformation (7, f ; )  -+ {qa, p,}  in virtue of Parseval’s 
theorem 

(19) 

so that the mode coefficients also obey canonical equations: 

qm = aH/apm, 9, = - aH/aqm. (20)  

j‘ 587 dx - Zpm 8qm = 0, 

Watson & West (1975) use co-ordinates of this kind in their derivation of the nonlinear 
spectral transport equations, and their statistical postulate involves the distribution 
of {qm,pm} at an initial time. The canonical property (20 ) ,  though not explicitly 
invoked by Watson & West, ensures that the probability measure 

dq, dPI CEp.2dP2.. * 

is an invariant over time. This invariance of the probability measure has been his- 
torically the decisive argument in favour of using canonical variables to formulate 
the statistical mechanics of physical systems. 

I thank John Miles for the opportunity to read and discuss his manuscript, and 
for his generous help in publishing these comments. This work was supported by 
the Office of Naval Research under contract’ N00014-76-C-0556. 
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